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ABSTRACT

-'This paper presents a new approach to the classical multiyear

capital budgeting problem. Three basic operational principles,

arising out of an actual implementation of such a model, are

specifically addressed in this approach. These principles are:

(1) All budgets except that of the first year possess a degree

of flexability; (2) the user favours a series of near optimal

solutions to a single optimal solution; and (3) an effective low

cost procedure for dealing with large problems is required. Using

the particular example of capital budgeting in the area of highway

maintenance, an algorithm is developed and computational results

for a variety of problem sizes are presented.,

Key Words: Capital Budgeting, Multiple Choice Knapsacks,

Langrean Relaxation.
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I. INTRODUCTION

Multiyear capital budgeting (CB) models for project selection are

common in the MS literature, and have been applied in a variety of

different areas. These models, generally expressed as zero-one integer

programing problems, have been solved using a plethora of different

solution procedures, and have met with varying degrees of success, which

for the most part has been dependent on the particular application

involved. Unfortunately, failure has prevailed more often thin success.

The current research was stimulated by recent attempts on the part of

the authors to apply a CB model to a particular problem. During the

implementation phase, conducted under close scrutiny of the client,

certain operating realities materialized. The purpose of this paper is

to highlight these realities, and to present procedures for dealing

with them in a pragmatic way.

The first of these realities or principles is that the user often

prefers several good solutions to his problem as distinct from a

single "optimal" solution. Considerations beyond the scope of the

model often dictate that certain solutions are operationally feasible

while others are not. Second, budget figures beyond that of the first

year of the planning horizon are generally not known in advance, but

rather must be estimated. Consequently, the strict requirement to not

exceed these figures can be relaxed. Third, with very large capital

budgeting problems it is often the case that either sophisticated

optimization packages are not available or that those which are
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available cannot solve problems of such magnitudes effectively and at

a low cost.

In section 2 we describe a particular capital budgeting problem

investigated by the authors. Section 3 presents a multiyear capital

budgeting formulation for dealing with this problem. Section 4

elaborates on the three operating principles described above, and

provides a reformulated version of the model which is appropriate for

dealing with these principles An algorithm tailored to these

principles is then described. Section 5 discusses the implementation

process and computational results.

2. CAPITAL BUDGETING IN PAVEMENT MAINTENANCE

A problem of significant interest in recent years is that involving

the effective allocation of maintenance budgets in the area of pavement

rehabilitation. With millions of dollars at stake annually, a tremendous

responsibility has been delegated to transport agencies to initiate

cost-effective maintenance strategies. The desire on the part of these

agencies to develop better planning tools has been stimulated by two

phenomena. These phenomena, which have materialized primarily during

the past five-ten years, are described below.

The first of these phenomena is that the means for evaluating

different maintenance alternatives is becoming more and more prevalent.
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This has resulted from several incentives. Specifically, numerous

studies have been conducted in different countries pertaining to the

performance of pavements in terms of such parameters as age, thickness,

subgrade structure and traffic. See for example, (3 ], [7 ], CS ].

Additionally, many h'ghway departments have created mechanisms for

collecting data relating to the structural adequacy of pavements

within their jurisdiction. This data has been used to construct

functions for predicting performance associated with various rehabi-

litative strategies.

The second of these phenomena is one of need. The desire for

closer monitoring and more effective planning in the area of pavement

maintenance is much greater now than was the case a few years ago.

The reason is simply one of resources. The proportion of treasury

dollars being allocated toward highway construction and maintenance

is substantially less at present than it was in the past.

There exist very few sophisticated models for capital budgeting

in this environment. In the most basic of situations, a particular

department will have standard strategies which it has been in the

practice of usin on particular road categories in the past. These

strategies wi!l be applied to those roads declared to be the worst

(or expected to be so over the ensuing 5 to 10 year period) up to the

point where the budget is absorbed. This approach is optimal under

the "grandfather" criterion. Moving towards a more sophisticated

approach, the department may have fairly accurate data on pavement
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performance, allowing one to assess the impact of various alternatives.

Various ranking and benefit/cost ratio approaches have been attempted

using these data. Here again, however, the model tends to operate

outside of the budget framework to a great extent.

Priority planning in pavement maintenance can be viewed as a two

phase process. The first phase involves the utilization of available

data on pavement condition ratings to construct performance functions.

These functions are used to forecast the structural rating at various

points in time during the planning horizon. In the second phase of

planning these performance measures are used to determine, from among

the many possible rehabilitative options available, that option for

each proposed project which maximizes the aggregate performance of the

highway system. The CB model examined herein concentrates on this

second phase. Details of this follow in sections 3 and 4. The

renainder of the current section gives a brief overview of the phase 1

process in the particular application undcr discussion.

Available data on pavement surface condition normally relates to

both structural and geometric adequacy. Structural adequacy is a

function of cracking, roughness, frost heaving, etc. Geometrics

pertains to lane and shoulder width, slope and crossfall corrections.

In terms of pavement maintenance we concentrate on structural adequacy

only, since this was the area of primary concern in the system in-

vestigated.
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Various indices/parameters are used to characterize structural

adequacy. The condition rating (PCR) used in this study was a measure

which accounted for all forms of structural distress. In the system

studied by the author, data in the form of (PCR, pavement age) pairs

was available corresponding to different traffic categories, different

geographical regions, and pavement thicknesses.

This data was used to construct a family of performance functions

of the form

P 0 =K (2.1)

In (2.1) P is the rating when the pavement was new, P is its rating

after A years, and (K,B) are regression coefficients. This family of

curves is similar to those used in the ASSHTO road test [9]. Further

details on these functional forms can be found in [1] and [2] which

dealt with single year planning problems.

The planning horizon for highway maintenance strategy selection

normally covers either a 5 or 10 year period. Given a set of estimated

budgets, planners must create a maintenance program which stays within

these limits and which will provide the highest possible level of service

from the highway system. Generally, this amounts to selecting a

rehabilitative strategy (a maintenance alternative together with an

action year or years in which to implement that strategy) for each

highway section in the system.
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For each strategy a benefit, R, is calculated based on the area

under the PCR curve plus a salvage value. The set of possible strategies

is further reduced by imposing a minimum acceptance level on the rate

of benefit. Out of the remaining strategies, a final set of allowable

strategies is then selected depending on the ratings in the benefit/

cost ratio. Commonly, one would restrict the allowable number of

strategies to be between 50 and 200. This means that for every road

section, there are usually 50 to 200 strategies treated as input to

the model. Exceptions are usually initiated by the planners and can

easily be incorporated into the system.

In this paper we propose a model for assigning strategies

to highway projects or sections which maximizes the overall performance

of the system while obeying budget restrictions. The model given

is capable of handling large problems, is relatively inexpensive

to operate in terms of computer running and storage costs, and can

be modified to allow for certain regional or sectoral requirements.

This model is described in the following sections.

3. A MULTIPLE CHOICE KNAPSACK MODEL

Let 'the road sections to be considered for rehabilitation during

the 10 year horizon be numbered 1, 2, ..., K. Let the possible

rehabilitative strategies for section k be numbered 1, 2, ..., N(k).

Rkj is the total return or benefit from using strategy j on road

section k, as described previously. By , y = 1, ..., 10 are available

budgets. The cost of implementing strategy j on road section k in year

y is denoted by Cy For years where no major rehabilitative work is

'*1*
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scheduled, Cy will represent routine maintenance only. Let

kj

I fstrategy j is used on road section k

& Xkj =
otherwise. (3.1)

For completeness, a "do-nothing" strategy is added to each class of

strategies for each road section.* For the "do-nothing" strategy, the

cost for each year will be the maintenance cost incurred. This allows

the imposition of. the multiple choice constraints,

j(k)kj = 1, for each class k. (3.2)

A model for the problem discussed in the previous section can then

be defined as follows:

Z = maximize E Rk Xk
k=l JiN(k)

K
subject to E cYX By'y I, ... , 10

k=l jcN(k) kj

S XkJ l, k = ... K (3.3)
jCN(k)

Xkj 0,, for all jENk), k 1,..., K.

The index sets N(k) defining the multiple choice classes are mutually

exclusive. Rkj C , 0 0, By 2 U, for all jcN(k), k = 1, ... , K,

and y =1,..., I.

*Except in the case of those sections where a fixed strategy has been

locked in, hence the road is already on a program.



4. ALGORITHMIC PROCEDURE

In this section, a detailed discussion of certain particular

requirements of the problem involved will first be presented. Then,

a specialized algorithm for the problem, taking the indicated

requirements into consideration, will be discussed.

Operational Considerations

During the initial analysis of the problem, it was observed that,

other than the budget for the first year, yearly budgets are all

projected values. These values will actually be used as proposals

for the years to come. It is apparent then that there is no need for

these nine yearly resource constraints to be satisfied precisely. That

is, it is acceptable for annual expenditures to exceed estimated budgets

by a reasonable amount for each of years 2, ..., 10. This additional

amount can usually be expressed as a percentage of the yearly figure.

At all times, however, the budget constraint for the first year must

be satisfied completely since this level of funding has already been

fixed.

A second consideration to be made in this problem was that the user

preferred to see a variety of good solutions as distinct from a single

optimal value. The reason for this is simply that there are certain

practical aspects to the problem which the model could not conveniently

capture. For example, hot mix patching is commonly done on a road section

where another section nearby is being resurfaced. Patching an isolated

section a hundred miles from available asphalt sources and gravel
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pits would never be done. Consequently, the user would prefer a program

that contained as few irregularities such as this as possible. Other

user imputed considerations are possible as well with the multiple

solution facility.

In addition to the above, there is also a minimum acceptable

performance requirement in terms of the same unit as the benefit,

R kj' for the overall model. This becomes the lower bound on the object' 'e

value of the model. In other words, any potential solution has to

achieve an objective value exceeding that of the minimum in order to

be considered as a feasible solution in the practical sense. As a

matter of fact, any solution to the above model which satisfied the

first constraint and has a objective value higher than the minimum can

be treated as a candidate solution for the problem, as long as the yearly

expenditures for the last nine years are considered as acceptable.

The decision-maker will then have to select the best solution available,

taking into considerations factors that cannot be captured by the

mathematical model itself.

The Algorithm

After taking the requirements discussed above into consideration,

the author's believe that the most suitable solution technique for this

problem is a Lagrangian relaxation approach. It deviates from con-

ventional Lagrangian relaxation approaches in the sense that only nine

of the ten budget constraints are incorporated into the objective

function. Also, the integrality restriction is retained. Then, the
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Lagrangian dual problem of Z can be defined as follows:

K 10 K
ZD = minimize maximize uY( L Cy  x -BY

U X k=l jeN~k) kj j  y=Z k=l jEN(k)

K 1 1
subject to E E CNki)Xkj <

k=l jE:N~k)

Z Xkj 1 , k = I, ... , K (4.1)
j.PN(k)j

V-:0, y 2, ... , 10

Xkj = 0, I, for all jLN(k), k = 1, ... , K.

In this formulation {UY1y10  are the nonnegative Lagrange multipliers.
Y=2

Since only the last nine will be relaxed, any feasible solution to this

Lagrangian dual problem which satisfies the minimum performance require-

ment should be considered an alternative by the decision-maker, provided

that the extent of deviation from the budgets for years 2-10 are acceptable.

A reduced dual problem, ZD(Ut), is formulated as the Lagrangian

dual problem, ZD , with a predetermined set of values for the vector of

UYs. The main scheme of the algorithm is to obtain an optimal solution

to the Lagrangian dual problem by iteratively solving successive ZD(Ut)

with a different set of values for Us each time. The set of Lagrangian

multipliers is updated after each iteration. The algorithm involves,

as the first step, solving ZD(Ut) with an initial set of values for
K

uYs, typically zeros. E Rk will then be calculated and
k=l jcN(k) kjXkj

compared with the minimum performance value. If acceptable, the total

costs incurred for years 2-10 will be accumulated. If the deviations
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from the budgets are considered as acceptable, the solution becomes

a candidate solution. A check for termination will then be performed.

If it fails, a new set of values for us will be generated by the

following rules, which constitute the standard subgradient method:

K

=Y U - St (E E CY X . - BY'), y = 2, ... , 10 (4.2)
t+l t k1jNk kj kij

k=l jcN(k) 3 '""

where X is an optimal solution to ZD(Ut) and St is a positive scalar

step size. U0 is defined as a predetermined initial set of values for

the Lagrangian multipliers. The step size is determined by:

Wt(ZD(Ut) - ZL)

St = (4.3)

10 K CYX -By1 2
7 -kj kj H

y-2 k l jYN(k)

where ZL is a lower bound on ZD and 0 < W 2. Initially, the value of

ZL can be determined, heuristically, by selecting the variable with

the smallest objective coefficient from each class to represent that class.

The objective value of this solution must be a lower bound on Z if there

exists at least one feasible primal solution for the problem. Subsequently,

ZL can be improved by any feasible primal solution that has a larger

objective value. (ZD(Ut) - ZL) represents the maximum amount the in-

cumbent optimal dual objective value can be decreased. Emptrically, it seems
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that this type of algorithm works best with 0 <W~ - 2 [ .Com-

putational results with a variety of values for W t are presented in a

later section. Computational performance and theoretical convergence

properties of the subgradient method are discussed in Held, Wolfe, and

Crowder [ c,].

After a new set of AJ' are generated, Z (UNO will be solved and

the whole process will be repeated until termination. An incumbent

optimal value for ZD0(U t) will be kept to be compared with an incumbent

optimal value for Z. The algorithm will terminate whenever these

two values become "close enough". It will sometimes be the case howcver

that this will not happen. Due to the integral duality gap, the

probability that the algorithm will terminate by this criterion is

highly dependent on the nature of the problem, as can be observed from

the computational results. However, for all practical purposes,

the algorithm will terminate upon reaching an arbitrary iteration

limit, or when a predetermined number of acceptable candidate solutions

are generated. Due to the adjustment of the different parameters, proof

of convergence is not possible. A branch-and-bound scheme is incorpor-

ated into the algorithm such as to theoretically assure convergence.

By a close examiination of the reduced dual problem, Z D(U t), it is

obvious that this subproblem takes on the form of a multiple choice

knapsack problem, except possibly with negative objective coefficients.

The authors utilized the method by Sinha and Zoitners for the multi-

ple choice knapsack problem [8] here in solving this reduced dual problem.
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The choice is based on the quickness and ease of reoptimization of the

method, and also its ability to blend in with the branch-and-bound scheme

without much additional effort.

The branch-and-bound scheme involved is the partitioning of the set

of variables in any multiple choice class into two subsets. On one branch

of the tree, a subset of the variables will be set to zero, while on

the other branch, the rest of the variables will be set to zero. The LIFO

method is chosen in-branching and backtracking due to the ease of re-

optimization and the minimal storage requirement.

The following is a step-by-step description of the algorithm:

Step 1: Let Z , Z - , t = 0. Initialize Ut.
U* *

Step 2: Solve ZD(Ut). If ZO(Ut) < ZD, Zo = LD(Ut).

Step 3: Check for feasibility of Z with Xt.

If feasible and Z > Z , Z = Z.

Step 4: If Z ZD, STOP.

Otherwise, continue.

Step 5: Let t = t + 1. Update Ut by (4.2) and (4.3).

Go to step 2.

With Lagrangian relaxation in integer prograning, a duality gap

almost always exists. The difficulty of proving optimality can be

resolved by settling for solutions which lie within a predetermined

percentage tsay within 1%) of optimality. That is, if Z becomes

greater than or equal to 99% of ZU, the procedure will be terminated.

Since only a standardized branch-and-bound method is utilized in the a
I.-, -
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algorithm, it will not be discussed here. Basically, it involves

first selecting an initial set of Ut. then ZD(Ut) will be solved

a fixed number of times by modifying Ut using (4.2) and (4.3). If

the procedure fails to stop, the branching scheme will take place.

Since the LIFO strategy is being applied, it is more efficient, for

re-optimization purposes, to use the last set of values for Ut to be

the initial valuesfor the succeeding branch, instead of re-setting

U to zeros. Generally, upon termination of the algorithm, a set

of alternative solutions will have been generated.The user can then

select the most appropriate solution, taking into considerations factors

that cannot be captured by the mathematical model.

5. IMPLEMENTATION AND COMPUTATIONAL RESULTS

Due to a lack of a theoretical scheme for evaluating the performance

of this type of problem, the authors have coded the above algorithm in

standard FORTRAN. Test problems were then generated so as to observe

the behavior of the algorithm, empirically, based on the variations of

different parameters. All tests were performed on the IBM 370 system

at York University. Data from actual applications of the model were

used in the tests. Problems of the following sizes were included:

50 objects, 95 projects and 212 projects. The authors feel that

randomly generated problems will not be able to provide significant

insight here due to the special requirements of the model. A close

examination of the data reveals the fact that in this type of problem,

a typical variable (or alternative) will have one or two very large

constraint coefficients relative to the others, for the ten constraints.
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This creates a very unstable system when one switches from one alternative

to another. Additionally within the same project, the coefficients for

the different alternatives have practically the same values, because

they are mainly maintenance costs, one-lift costs, or two-lift costs.

Out of a project with one hundred alternatives, there might only be five

or six values which differ significantly from one another for the first

year budget constraint. This renders the reduced dual problem, ZD(Ut),

very insensitive.

As indicated by the test results, the solution procedure for the

problem becomes more stable as the number of projects increases. The W

parameters perform best with values in the neighbourhood of 0.5, due

to the similarity of the coefficients. One significant observation is

that the values of the Lagranqian multipliers tend to fluctuate, up

and down, drastically. A remedy that works well, empirically, is to

decrease the valuec of the multipliers at a rate that is half of the rate

of increase. In other words, during the updating of the UYs, those that

will increase in value will do so at a certain rate, while those that need

to be decreased will take on a rate half of the rate of increase. Also

it is common practice in gradient method to reduce the step-size, W, by

half whenever ZD fails to improve in a fixed number of steps.

The storage requirement for this algorithm is minimal. With N equal

to the total number of variables and K the number of road sections (or

projects), the major storage requirement is approximately 16N+21K,

including storage for the original coefficients. Storage for the branch-

.___" I
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and-bound method is additional, it is a function that depends on the

depth of the tree. From empirical results, this storage is negligible.

The solution time is relatively fast for the sample problems tested.

For example, a typical problem with 200 road sections and 100 alternatives

in each section can be solved in approximately 400 CPU seconds (350 ZD(Ut)

solved) on an IMB 370. Additional results are printed in Table 1.

It has been found, at least with these sample data, that with this

type of problem it is relatively easy to locate candidate solutions, while

99% optimal solution may be difficult to find. For the 212 project case

it was not possible in one case to locate such a solution within the

iteration limit. But, overall, the solution times were satisfactory, and

the candidate solutions generated were adequate.
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Table I

Computational Results

(Approximately 100 alternatives for each project)

(Execution time is in CPU seconds on IBM 370)

(Problems are solved until within 95% optimal)

212 Projects

W = 1.0 W 1.0/0.5 W 0.5/0.25

Number of
subproblems solved 2015* 502 210

Execution time 2086 524 216
(seconds)

Number of primal 80 109 45
feasible solutions
generated

93 Projects

Number of
subproblems solved 1087 240 121

Execution time 259 59 32
(seconds)

Number of primal 34 11 9
feasible solutions
generated

*REACHED ITERATION COUNT LIMIT.
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